Digestão anaeróbia de resíduos orgânicos provenientes de compostagem caseira com uso de reatores Biochemical Methane Potential

  • Rafaela Franqueto Docente Centro de Ensino Superior dos Campos Gerais (CESCAGE), Doutoranda, Universidade Regional de Blumenau

Resumo

Resumo

Uma das alternativas para diversificação da matriz energética é o biogás, uma fonte de energia renovável e sustentável. O biogás reduz a emissão de gases de efeito estufa, bem como os impactos causados pela deposição de resíduos da agricultura e pecuária no meio ambiente. O presente estudo tem como objetivo a otimização da produção de biogás a partir da digestão anaeróbia de resíduo de compostagem caseira em três tratamentos, sob efeitos da variação de temperatura ambiente e sem o controle da temperatura. Na amostra, foram realizadas análises de sólidos totais, umidade e pH, para a caracterização inicial e final do resíduo. Todos os reatores Biochemical Methane Potential (BMP) foram bem-sucedidos na produção de biogás; entretanto, o reator 1, denominado de BMP1 obteve uma produção superior, o que pode ser atribuída a maior quantidade de Sólidos Totais (ST) inicial no sistema.

Palavras-chave: Biogás. BMP. Energia Renovável. Resíduos.

Abstract

One of the alternatives for the energy matrix diversification is biogas, a renewable and sustainable energy source. Biogas reduces the emission of greenhouse gases and the impacts caused by the deposition of agricultural and livestock waste into the environment. The present study aims to optimize biogas production from the anaerobic digestion of household compost waste in three treatments, under the effect of room temperature variation and without temperature control. Analyses of total solids, moisture, and pH were carried out for or the waste's initial and final characterization. All Biochemical Methane Potential (BMP) reactors were successful in the production of biogas; however, the BMP1 obtained a higher production, which can be attributed to the greater amount of initial Total Solid (TS) in the system.

Keywords: Biogas. BMP. Renewable Energy.  Waste.

Resumen

Una de las alternativas para la diversificación de la matriz energética es el biogás, una fuente de energía renovable y sostenible. El biogás reduce la emisión de gases con efecto invernadero, así como los impactos generados por la disposición de residuos de la agricultura y de la pecuaria en el medioambiente. Este estudio tiene como objetivo la optimización de la producción de biogás a partir de la digestión anaeróbica de residuos del compost doméstico en tres tratamientos, bajo efecto de la variación de la temperatura ambiente y sin el control de temperatura. En la muestra, se realizaron análisis de sólidos totales, humedad y pH, para la caracterización inicial y final del residuo. Todos los reactivos Biochemical Methane Potential (BMP) fueron exitosos en la producción del biogás; sin embargo, el reactivo 1, denominado BPM1, obtuvo mejores resultados, que pueden ser atribuidos a la cantidad inicial más grande de Sólidos Totales (ST) en el sistema.

Palabras-clave: Biogás. BMP. Energía Renovable. Residuos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rafaela Franqueto, Docente Centro de Ensino Superior dos Campos Gerais (CESCAGE), Doutoranda, Universidade Regional de Blumenau
Engenheira Ambiental e Mestra em Engenharia Sanitária e Ambiental (Universidade Estadual do Centro-Oeste), Doutoranda em Engenharia Ambiental (Universidade Regional de Blumenau), Docente Centro de Ensino Superior dos Campos Gerais (CESCAGE)

Referências

ANDREOLI, C. V.; FERREIRA, A. C.; CHERNICHARO, C. A.; BORGES, E. S. M. Secagem e higienização de lodos com aproveitamento de biogás. In: CASSINI, S. T. (ed.). Digestão de resíduos sólidos orgânicos e aproveitamento do biogás. Rio de Janeiro: ABES, Rima, 2003.

ANGELIDAKI, I.; ALVES, M.; BOLZONELLA, D.; CAMPOS, J. L.; GUWY, A.J.; KALYUZHNYI, S.; JENICEK, P.; VAN LIER, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, v. 59, n. 5, p. 927-34, 2009.

APPELS, L.; ASSCHEB, A. V.; WILLEMSB, K.; DEGRÈVEA, J.; IMPEA, J. V.; DEWIL, R. Peracetic acid oxidation as an alternative pretreatment for the anaerobic digestion of waste activated sludge. Bioresource Technology, v. 102, n. 5, p. 4124-4130, 2011.

BAEYENS, J., KANG, Q., APPELS, L., DEWIL, R., LV, Y., TAN, T. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, v. 47, p. 60-88, Apr. 2015.

BOUŠKOVÁ, A DOHÁNYOS, M.; SCHMIDT, J.E.; ANGELIDAKI, I. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Research, v. 39, n. 8, p. 1481-8, Apr. 2005.

BROWNE, J. D., ALLEN, E., MURPHY, J. D. Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Applied Energy, v. 128, p. 307-314, 2014.

CHANDRA, R., TAKEUCHI, H., HASEGAWA, T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable & Sustainable Energy Reviews, v. 16, n. 3, p. 1462-1476, 2012.

CHERNICHARO, C. A. L. Reatores anaeróbios. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, UFMG, 2007. 380 p.

DECOTTIGNIES, V.; GALTIER, L.; LEFEBVRE, X; VILLERIO, T. Comparison of analytical methods to determine the stability of municipal solid waste and related wastes. In: INTERNATIONAL WASTE MANAGEMENT AND LANDFILL SYMPOSIUM, 10., 2005, Sardinia. Proceedings […]. Cagliari: CISA, 2005.

DONG, L.; ZHENHONG, Y.; YONGMING, S. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresource Technology, v. 101, n. 8, 2010.

EBNER, J. H., LABATUT, R. A., RANKIN, M. J., PRONTO, J. L., GOOCH, C. A., WILLIAMSON, A. A., TRABOLD, T. A. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste. Environmental Science and Technology, v. 49, n. 18, p. 11199-208, 2015.

ELBESHBISHY, E., NAKHLA, G., HAFEZ, H. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresource Technology, v. 110, p. 18-25, 2012.

FRANQUETO, R., SILVA, J.D.DA. Effect of Temperature Variation on Codigestion of Animal Waste and Agricultural Residue for Biogas Production. BioEnergy Research, v. 13, p. 630–642, 2019.

FRANQUETO, R., SILVA, J.D.DA., STARICK, E.K., JACINTO, C.F.S. Anaerobic codigestion of bovine manure and banana tree leaf: the effect of temperature variability on biogas yield in different proportions of waste. Journal of Material Cycles and Waste Management, v. 22, p. 1444 –1458, 2020.

HANSEN, T. L.; SCHMIDT, J. E.; ANGELIDAKI, I.; MARCA, E.; JANSEN, J. LA. C.; MOSBAEK, H.; CHRISTENSEN, T.H. Method for determination of methane potentials of solid organic waste. Waste Management, v. 24, n. 4, 2004.

HUBENOV, V., SIMEONOV, I. Anaerobic co-digestion of waste fruits and vegetables and swine manure in a pilot-scale bioreactor. Bulgarian Chemical Communications, v. 47, 2015.

KAFLE, G.K.; KIM, S.H. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation. Applied Energy, v. 103, p. 61-72, 2013.

KELLY, R. J. Solid waste biodegradation enhancements and the evaluation of analytical methods used to predict waste stability. 2002. 66 f. Thesis (Master of Science in Environmental Science and Engineering) - Faculty of Virginia Polytechnic Institute and State University, Blacksburg- Virginia, 2002.

LABATUT, R. A.; ANGENENT, L. T.; SCOTT, N. R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, v. 102, n. 3, 2011.

LASTELLA, G., TESTA, C., CORNACCHIA, G., NOTORNICOLA, M., VOLTASIO, F., SHARMA, V. K. Anaerobic digestion of semi-solid organic waste: Biogas production and its purification. Energy Conversion and Management, v. 43, n. 1, p. 63-75, 2002.

LI, D.; LIU, S.; MI, L.; LI, Z.; YUAN, Y.; YAN, Z.; LIU, X. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology, v. 189, p. 319-326, Apr. 2015.

MATA-ALVARES, J.; DOSTA, J.; MACÉ, S.; ASTALS, S. Codigestion of solid wastes: A review of its uses and perspectives including modeling. Critical Reviews in Biotechnology, v. 31, n. 2, p. 99-111, 2011.

NÁTHIA-NEVES, G. et al. Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, v. 15, n. 9, p. 2033-2046, 2018.

O’LEARY, P. R.; TCHOBANOGLOUS, G. Landfilling. In: TCHOBANOGLOUS, G.; KREITH, F. (ed.). Handbook of solid waste management. 2. ed. New York: McGraw-Hill, 2002.

PALUDO, G. B. Microrganismos geneticamente modificados e sua relação com o aumento na produção de biocombustíveis. Enciclopédia Biosfera, Goiânia, v. 10, n. 18, p. 2212, 2014.

PARAWIRA, W.; MURTO, M.; ZVAUYA, R.; MATTIASSON, B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, v. 29, n. 11, p. 1811-1823, 2004.

PENG, J. F. et al. Spatial succession and metabolic properties of functional microbial communities in an anaerobic baffled reactor. International Biodeterioration and Biodegradation, v. 80, 2013.

RAPOSO, F. et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. Journal of Chemical Technology & Biotechnology, v. 86, n. 8, Aug. 2011.

SCHIRMER, W. N.; JUCÁ, J. F. T.; SCHULER, A. R. P.; HOLANDA, S.; JESUS, L. L. Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: Evaluation in refuse of different ages. Brazilian Journal of Chemical Engineering, v. 31, n. 2, 2014.

TIETZ, C. M. et al. Produção de energia pela biodigestão anaeróbia de efluentes: o caso da bovinocultura. Acta Iguazu, v. 2, n. 3, 2013.

USEPA. Air emissions from municipal solid waste landfills – Background information for proposed satandars and guidelines. Washington: United States Environmental Protection Agency,1991.

VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental / UFMG, 2005.

ZHANG, C.; SU, H.; TAN, T. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Bioresource Technology, v. 145, p. 10-16, 2013.

ZHANG, C.; SU, H.; BAEYENS, J.; TAN, T. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, v. 38, p. 383-392, 2014.

ZIGANSHIN, A. M.; LIEBETRAU, J.; PROTER, J.; KLEINSTEUBER, S. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Applied Microbiology and Biotechnology, v. 97, n. 11, p. 5161-74, 2013.

YANGIN-GOMEC, C., SAPMAZ, T., AYDIN, S. Impact of inoculum acclimation on energy recovery and investigation of microbial community changes during anaerobic digestion of the chicken manure. Environmental Technology, v. 41, n. 1, p. 49-58, 2018.

Publicado
2021-01-06
Seção
Artigos